In this article, we are going to make a simple Analog Temperature Controller using OP-Amp and Relay. This is a basic article, that can be used as a reference for large designs. If you understand it clearly, you can apply it in other controls. So let’s start!

⚠️ Disclaimer ⚠️

Working with electricity involves serious risk. Ensure you have the necessary skills and take proper safety precautions before attempting any electrical projects. Proceed at your own risk — the author assumes no responsibility for any damage, injury, or issues resulting from the use or misuse of the information provided.

Advertisements

All content on this website is original and protected by copyright. Please do not copy or reproduce content without permission. While most of the resources shared here are open-source and freely accessible for your learning and benefit, your respect for our intellectual effort is appreciated.

If you find our tutorials helpful, consider supporting us by purchasing related materials or sharing our work — it helps keep the content flowing.

Need help or have questions? Leave a comment below — the author is always happy to assist!

You can this article too: Analog Temperature controller for an incubator with Capacitor Power Supply

The basic of comparator:

Comparator is one of the modes of the Op-Amp circuit. It is pretty simple in a configuration like this image below:

The output of the comparator is high if the non-inverting input voltage is higher than the inverting input pin. And the output is low if the non-inverting pin is lower than in voltage reading than the inverting pin. Here, we can take one pin as a reference and the other pin as an input pin. This is a totally simple operation. But there are some problems using in this condition while you are controlling something like a switch or relay or a load. Because, if the input voltage is almost the same as the reference voltage, the output will fluctuate. Check this image carefully.

The output is fluctuating for a very short time. This will definitely kill the relays if this is not conditioned. You may think about adding capacitor filters but that will not improve it. To solve this problem, we need to use the comparator circuit as a Schmitt-Trigger circuit or a comparator with hysteresis.

Ecplanation:

Here, a resistor R2 is used as a feedback resistor. This feedback resistor works as our hysteresis control resistor. Think in a simple way, whenever the input Vin is lower than the reference voltage, the output will be high. Then the feedback resistor will carry a minor current to the reference pin which increases the pin voltage a little. That makes the reference voltage a little higher than the present Vin voltage. So to turn the output off, the Vin pin has to be a little extra higher than the previous reference voltage.

But once it is higher than the preset reference voltage, the output will be low. Again the feedback resistor will draw some current from the reference pin which will actually reduce the actual reference voltage by a little. Now what? the Vin pin needs to be lower than this voltage (actual reference voltage + voltage droop due to the feedback resistor). This way the hysteresis works.

This hysteresis helps to control the output from fluctuating at the same input voltage range. That protects relays from chattering ensuring longer life.

If you want to know the calculations you can read this article here.

Now, we can apply the comparator circuit in our project.

Circuit diagram:

Here is the circuit diagram of our Analog Temperature Controller:

analog Temperature controller circuit diagram

Here, a common Op-Amp LM358 is used where the R6 is our feedback resistor. Tuning the potentiometer RV1, we can set our temperature range. Then sensor RT1 is a 10KOhms NTC type temperature sensor. When the temperature is higher than the setpoint, the relay will be turned on and the heater is off. The same circuit can be used for cooling purposes too connecting a cooler in the other terminal of the relay.

PCB:

analog Temperature controller

PCB diagram:

analog Temperature controller PCB

Conclusion:

Many people ask me to post simplified projects so that they can understand them. That is why this article is posted and I tried it the maximum simple I can do. I hope this will help you to understand the circuit. If still, you have any problem, kindly comment below. And don’t forget to subscribe.

Liked this article? Subscribe to our newsletter:

Loading

or,

Visit LabProjectsBD.com for more inspiring projects and tutorials.

Thank you!

See you in the next article, Thanks.

Check this: 6V Lead-Acid battery charger circuit


MKDas

Mithun K. Das. B.Sc. in Electrical and Electronic Engineering (EEE) from KUET. Senior Embedded Systems Designer at a leading international company. Welcome to my personal blog! I share articles on various electronics topics, breaking them down into simple and easy-to-understand explanations, especially for beginners. My goal is to make learning electronics accessible and enjoyable for everyone. If you have any questions or need further assistance, feel free to reach out through the Contact Us page. Thank you for visiting, and happy learning!

2 Comments

R K Hammy · 29/06/2021 at 4:48 am

Many thanks for the project and clear explanation

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *